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A discrete model of a rotor system with a fluid is proposed. The model contains a rotating disc, which is directly and symmetrically 
seated on a spindle located in an isotropic, viscoelastic mounting, and a ring which slides with friction over the disc. There is a 
viscoelastic coupling between the eentres of the disc and the ring. The disc simulates the rotor and the ring simulates the fluid 
mass of a filler. When the ring slides over the disc, an interactive force arises which is directed at an angle to the relative velocity. 
It is shown that, with a correct choice of the parameters, the model enables an approximate determination to be made of the 
domain of stability of steady rotation in the plane of the parameters of the viscoelastic mounting of the axis. It is established 
that, on leaving the domain of stability, Andropov-Hopf bifurcation occurs and a periodic motion of the type of a circular precession 
is generated (in a "soft" or "hard" way) from the state of steady rotation. © 2005 Elsevier Ltd. All rights reserved. 

Mathematical models of rotor systems with a fluid which involve the Navier-Stokes equations are quite 
complicated for a stability analysis [1]. The stability of a rotor, partially filled with a fluid, was investigated 
in [2], subject to the condition that the angular velocity of rotation is constant, and the boundaries of 
domains with a different degree of instability were constructed in the parameter space of the problem. 
The difficulties of investigating distributed models have prompted an analysis of the possibility of 
constructing discrete models [3], which could describe some important features of the behaviour of a 
rotor system containing a fluid with satisfactory accuracy. 

In actual systems, small changes in the parameters can occur over time and this evolution of the 
parameters can lead to a state when the system reaches the boundary of the stability domain. If, at 
the same time, a violation, which is as small as may be desired, of a "dangerous" boundary occurred, 
the system will pass into a new state which cannot be approximated to the initial state by choosing the 
violation of the boundary to be sufficiently small (for definitions of "safe" and "dangerous" boundaries, 
see [4, 5]). It would therefore seem desirable to supplement the investigation of stability with an 
investigation of the nature of the boundaries which, as is shown below, is fairly straightforward to do 
for a discrete model. 

1. D I S C R E T E  MODEL 

A disc of mass md and radius Rd, located in a non-linear, viscoelastic mounting on a spindle, rotates at 
a constant angular velocity ~ in a horizontal plane (Fig. 1). A ring of mass mr and radius Rr is attached 
to the centre of the disc. we will assume that the angular displacements of the axes of the disc and the 
ring are negligibly small and that all the points of the system can only move in the horizontal plane, 
that is, the plane perpendicular to the axis of steady rotation. We will now introduce two system of 
coordinates in the plane of motion of the disc and ring: a fixed system of coordinates Oxy, the origin 
of which is associated with the axis of the steady rotation, and a moving system of coordinates O1~! ] 
which coincides with the centre of the disc (Fig. 2). The centre of the ring is denoted by 02. 

tPrikl. Mat. Mekh. Vol. 68, No. 6, pp. 984-993, 2004. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2004.11.010 
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The force acting on the disc from the side of the non-linear, viscoelastic mounting has the form 

ra  = - ( k a  + k2alro, l~)r01 - (qd + n2dlbo,l~)ro,, 0 < ~, D < 2 ( 1 . 1 )  

where rm = xle~ = yley is the radius vector from the origin of the fixed system of coordinates to the 
point O1. Elastic and friction forces also act between the disc and the ring 

fr = - kr(r02 - r01 ) - qrf(Vr - vd)dl (1.2) 

where 

V r  --  V d  = ( '~2  - -  3fl  --  (Y - Y2)~2 + (Y - Yl)q°l)ex + (¢2 - 3~1 + (x - x2){o 2 - (x - x 1 ) t ~ l  ) e y  

Va = i:01 + [O~1, rl] is the velocity of the point M(x,y) of the disc relative to the fixed system of coordinates 
Oxy, rl = (x -x l ) e  x + (y -yl)ey is a radius vector from the point O1 to the point M, ¢01 = 01ez is the 
angular velocity of rotation of the disc, vr =/:o2 + [tOe, rE] is the velocity of the point of the ring which 
is in contact with the point M of the disc, r02 = x2e x + yEey, r E = (x -x2)e x + (y -y2)ey is the radius vector 
from point O to the point O2, and to 2 = 02ez is the angular velocity of rotation of the ring. 

The expressions for the potential and kinetic energy of the disc (subscript d) and the ring (subscript 
r) have the form 

k d .  2 2 k2d  . 2 2 . ( c t+2) /2  rnd..2 .2~ 1 .2 
U d = - ~ x t + y l ) + - ~ - ~ x l + Y l )  , T d = - ~ X l + Y l j + ~ l d ~  1 (1.3) 

= r = m r  2 .2) 1 . :2 
U r k'~[(x2-xl)2+(y2-Yl)2],  T r ~-(~2+y2 +~lrtP 2 (1.4) 

where Id and/~ are the central axial moments of inertia of the disc and the ring. Expressions (1.3) and 
(1.4) enable us to set up the Langrangian L = T - U. 

We will write the generalized forces applied to the system under the different conditions of motion 
using the work of these forces 

6 

8A = ~ Q,,~q,, 
n = l  
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On the other hand, the expression for the work can be written in the form 

~SA = 8A 1 + ~A2; 8A 1 = ffrlSr01, ~A2 = Id f f r2~rre l  

where ffrl is the friction force which arises during the motion of the disc (the second term in expression 
(1.1)) and fp2 is the friction force between the disc and the ring (the second term in (1.2)). After 
substituting into Langrange's equations 

d dL  dL  
- Qi  

dtddli dq  i 

expressions for the Langrangian L = T -  U, obtained using relations (1.3) and (1.4), and omitting the 
intermediate steps, we have 

2,1/2 
mdJ(I + k d X l  + k r ( X l  - x2) + k2d(x~ + Y l )  xl  = 

, .2 .2,1/2 . 
= rlr/r[(X2-Xl) + (Y2-Yl)q01] - l l dX l  - r l2d (X l  + Y l )  Xl 

• . 2 2 . 1 / 2  

mdYl +kaYl +kr(Y l - -Y2)+tC2d tX l  + Yl)  Yl = 

.2, 1/2 . 
= l l r l r [ ( ¢ 2 - ¢ l ) - ( X 2 - X l ) 4 1 ]  - r l dYl  -TI2d('IC~ + Y l )  Y l  

m~'t'2 + k r ( x 2  - X l )  = --'qrlr[(SC2 --3Cl) + (Y2 - - Y l ) 4 1 ]  

(1.5) 

rn~Y2 + kr(Y2 - Y l )  = -T l r l r [  0?2 - Yl) + (x2 - Xl)41 ] 

2 ° 

I d(Pl = - T]r l rRr (  IP2 - 41) + Mar 
2 • 

I di02 = - T l r l r R r  ( lP2 - 41) 

where lr = 2rd~r and Mdr is the moment created by the drive. 
The system of equations (1.5) has the steady solution 

x l = O ,  x 2 = O ,  y i = O ,  Y2=O, 41 =~'-~, 4 2 = - Q  (1.6) 

Linearizing system (1.5) in the neighbourhood of the steady solution (1.6) under the assumption that 
the angular velocity of rotation of the disc is maintained constant and equal to f~ by means of a special 
drive and introducing the complex variables 

Zl = xz + iYl ,  Z2 = X2 4- iy  2 (1.7) 

we obtain the system 

maz'l + kazl + kr(z l  - z2) = qrl~[(z2 - z l )  - i(z2 - zl)f~] - rldZl 

mrZ2 + kr (Z2  - Zl) -- --1]rlr[(Z2 -- Zl) -- i ( z 2  -- Zl ) ~ ]  (1.8) 
2.  

I ~ 2  = - r l J , R r ~ ! 2  (~2 = q02 - f2) 

The last of these equations, which has a solution of the form 

2 - l  
f112 = C e x p ( - l l r l r R r l  r t) 

is separated out from the first two. 
The equations of system (1.8) are invariant under a shift of the origin of the time reference and a 

rotation of the system of coordinates about the vertical axis by an angle of It/2. By virtue of these 
symmetry properties, the system admits of the particular solutions 

zl = ~lexp(~,t), z2 = ~2exp(~t) (1.9) 
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The quantities 21, 22, £ satisfy equations which, after introducing the variables 

Wl = Z'I' W2 = Z 2 - - Z l  

are simplified somewhat and reduce to the following 

K 2 maW 1 + kdW 1 - krw 2 = Tlrlr[W2~ .-  i w 2 ~ ]  -- TldWl£ 

mrW2)~ 2 + mrWl~, 2 + krW 2 = -1]rlr[W2~.-- i w 2 ~  ] 
(1.10) 

The characteristic equation of the resulting system has the form 

md~'2+rld~'+kd - q r l r ~ ' - k r + i q r l r ~  = 0 

mrS, 2 mr£ 2 + qrlr)~ + k~- iTIrlr~-'~ 
( 1 . 1 1 )  

Since )~ depends continuously on the parameters of the problem, a change in the degree of instability 
of the system occurs when an imaginary number X = im appears. 

We will now determine the values of the damping factors rid and the stiffness of the mounting kd of 
the spindle of the disc which, when the remaining parameters are fixed, ensure imaginary values of )~. 
Substituting the expressions 9~ =im and Tit = O + iz into Eq. (1.11) and separating real and imaginary 
parts, we obtain a linear system of two equations in kd and lqa. Solving these equations and introducing 
the dimensionless variables and parameters 

kd qd t~lr )~lr O) 
= - - T f i ,  n ,  = = = = - -  

m a kr 
K, =- (1.12) 

tTl d + m r' mr~-~ 2 

we have 

where 

2 

K d -~ ~ { [K r - - I I2(~-  1)-  I;21 [K r - - I I 2 ( x -  1 ) -  btx2l + 1121 (~ -  1) 2 } 

1:3('C - 1 )( 1 - ~1)  I-I  1 

Hd = BA 

( 1 . 1 3 )  

2 2 
A = [ ' C 2 + [ I 2 ( ' ~ - l ) - K r ]  + I ] t ( ' r - l )  2 

Relations (1.13), in the case of fixed parameters 1-I1, 112, g, Kr and variable % defined a curve in the 
plane of the mounting parameters Kd and H a which, together with the special line Ka = 0, form a 
so-called D-decomposition [6] of the above plane into domains with differing degrees of instability. 

A D-decomposition (the solid curve with small dashes) of the KaHd plane is shown in Fig. 3 for the 
following values: 171 = 0.069, 1-I2 = -4.2, g = 0.373, Kr = 1.204. 

The hatching of the boundaries of the D-decomposition is carried out in the following way: the passage 
across the boundary of a domain D(n) from the unhatched side onto the hatched side corresponds to 
doubling of the order of instability, that is, a transfer into the domain D(n + 2). The stability domain 
is denoted by D(0). The direction in which the parameter "c increases is shown by an arrow. As the 
precession frequency tends to infinity (x ~ ---oo), the mounting parameters H a ~ -([.t -1 -- 1)Ha, 
Ka ~ +oo. Note that, in the case of the scale chosen in Fig. 3, the flattened branches of the D-curve 
(the upper and lower of which correspond to --oo < "c < 0 and 7.9 < z < ~ )  practically merge with the 
abscissa axis and the hatching of one branch is superimposed on the other. There are two stability 
domains in the case of the choice of physically interesting parameters. One stability domain, that is, 
DI(0), contains a point which corresponds to fairly large positive values of the damping factor Ha. 

In order to demonstrate the effect of a change in the parameter He on the sizes of domains with a 
different degree of instability, the D-curves for 112 = -3.5 (the dashed curve) and FI 2 = -4.8 (the dot-dash 
curve) have been constructed in Fig. 3. 

From the practical point of view, the stability domain D2(0), which is located in the neighbourhood 
of zero values of the parameters of the mounting of the spindle of the rotating disc, is of the greatest 
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interest (see Fig. 4, where a D-decomposition close to the origin of the system of coordinates is shown 
for 1-I 1 = 0.028, 1-I 2 = -4.2, g = 0.373, Kr = 1.4). D-decomposition curves are also shown in Fig. 4 for 
the cases FI2 = -3  (the dashed curve) and H2 = -6  (the dot-dashed) with the remaining parameters 
unchanged. It can be seen from the graph that a reduction in 1I 2 leads to an elongation of the domain 
D2(0) along the ordinate axis and, at the same time, it undergoes a small compression along the abscissa 
axis. The whole figure becomes smaller when 1-12 is increased. 

The effect of a change in the parameter Kr when H1 = 0.028, 1-12 = -4.2, g = 0.373 is shown in 
Fig. 5. The dashed curve corresponds to the value K1 = 2.0 and the dot-dash curve to the value 
Kr = 0.95. When Kr is increased, the stability domain Dz(O) becomes larger along the ordinate axis and 
the domain DI(0) expands somewhat due to the approach of its boundary to the ordinate axis. Note 
that, as ~ increases, the principal D-curve, after intersecting the ordinate axis when Kr > 1, is deflected 
upwards and forms a loop in the upper half plane but, when Kr < 1, it is deflected downwards, forming 
a loop which is predominantly in the lower half-plane. 
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2. A R O T O R  P A R T I A L L Y  F I L L E D  W I T H  A F L U I D  

The stability of a rotor is partially filled with a viscous, incompressible fluid, the angular velocity of which 
is kept constant by means of a special drive, was considered earlier in [2]. The cavity of the rotor has 
the shape of a tall cylinder. The effect of gravity is ignored in view of the high angular velocities of 
rotation. The spindle of the rotor is located in viscoelastic mountings, the angular movements of the 
spindle can be neglected and it can be assumed that all the particles of the rotor can only execute plane- 
parallel motions. In order to construct the D-decomposition, an approach is used in which no knowledge 
of the characteristic equation in explicit form is required. 

After some reduction, the solution of the linearized problem of the plane-parallel motion of the fluid 
accompanying the angular precession of the rotor [2] can be represented in the form 

I ce Zl(krr'] u - C 1 + 7 + i  e i~+c .c .  

[ ic2 Z! (rkr) ] 
19 = ic  I - - 7  - k Z o ( k r )  + e '~ + c.c. 

r 
(2.1) 

2 
P-= [ i ( 2 t l - t o o ) c l r +  i(2f~ + to)~ + ~ f - 2 f f l Z l ( k r ) ] e i ~ + c . c .  
P 

where u and v are the radial and azimuthal components of the velocity of motion of the fluid particles, 
p is the pressure, 19 is the density of the fluid, El is the absolute angular velocity of the rotor, to is the 
angular velocity of precession, Zn(kr) = c3H~)(kr) + c4H~l(kr), H ~  )' (2)(kr) is an n-th order Hankel 
function, k = ~¢(i - tod l  to01), ~ -- 4 I too I /2v ,  too -- t~ - to is the angular velocity of proper rotation of 
the rotor and v is the kinematic viscosity of the fluid. 

We now change to the dimensionless variables 

k~ I l l  co ml v 
K1 = 2' H 1 - z = ~1' g -  , E -  

ml ~ ml~'~' m I + m 2 ~ a  2 

C 1 C 2 c3H(o2)(ka) c4H(ol)(kb) 
CI = -~' C2 = a2f2' C3 - a ~  ' C 4 -  af~ 

where ml is the mass of the rotor, m 2 is the mass of the filling fluid,/(1 and/ /1 are the dimensionless 
coefficient of elasticity and the dimensionless damping factor of the mountings of the rotor spindle 
respectively, a is the radius of the cylindrical cavity in the rotor, b is the internal radius of the cylindrical 
layer of fluid under conditions of steady rotation and E is the dimensionless Ekman number. The 
constants C1 . . . . .  C4 are determined from the boundary conditions on the free surface and on the inner 
wall of the rotor after substituting the solution of (2.1) into them 

C I + C  2 + i h l a C  3 + i g l a C  4 = 0 

C l - C 2 + i(ka - hla)C 3 + i(kagoa - gla)C4 = 0 

4~-2C2 - i[2kbhob + (k2b 2 - 4 ) ~ - l h l b ] C 3  - i[2kb + (k2b 2 - 4 ) ~ - l g l b ] C 4  = 0 (2.2) 

2 
- ilZ--__zC 1 + i8-2[ 1 - x - f( 'c)]  C 2 + 

+ ~5-11 2 ( l i  "C)hob + f (~)hlb]C3 + k-l[. 2(l__kb - ~ ) +  f( 'c)glb] C 4 =  -=z212f~ 

where 
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H}2)(kb) H}l)(ka) H~2)(ka) _ H(II)(kb) 
hjb = H(o2)(ka ), gja = Hlo(kb),  J = 0 , 1 ;  hla----H(o2)(ka ), g l b  O ( 1 ) ( k b )  

5 = b f ( 'c)  - 2 " C - 1 + 4 ( 1 - ' ~ )  
a' 1 - ~c k2b 2 

After integrating the stresses applied to the inner surface of the cylindrical cavity of the rotor, 
expressions are obtained for the components of the dimensionless hydrodynamic force acting per unit 
length of the cavity, 

F{ = 1152Re(1+4i~-~--~C2)' Fq = ---1_5 I ; 4  L ~ R e C 2  (2.3) 

Substituting the expressions for the forces (2.3) into the equations for the transnational motion of 
the rotor, we obtain relations connecting the parameter "c and the defining parameters of the problem 
for the case of circular precession, 

~l.t (-'~2+KI) = F{'~2' 1-gl.t H l x  = Frl1:2 
1 -  

(2.4) 

The graph of the hydrodynamic force as a function of the frequency of precession has a clearly 
expressed resonance from which is caused by resonance perturbation of the waves which propagate 
over the free surface of the fluid. The resonance frequencies can be approximately determined from 
the equality 

"l~l, 2 = (1 +52)-1(2+ j ~ l  -~5:)). 

An example of a D-decomposition was given earlier in [2]. 

3. THE C H O I C E  OF THE PARAMETERS OF THE D I S C R E T E  MODEL 

The basic D-curve of the discrete model intersects the abscissa axis Ha = 0 at the origin of the coordinates 
Ka = 0 and at pointA when K,~ = (g-lKr - 1)/(Kr - 1). We will find the points of intersection with the 
ordinate axis Ka = 0 when the parameter II] is small and can be neglected. The following values of the 
parameter 

~ .  2 1 1 2 
"171,4 = (-I]2~/1-12+4gl-I2+4~tKr), "~2.3 = - ~I-I2T~JI-I2 +41-I2+4Kr 

~t 

correspond to the points of intersection. First of all, point B, which is closest to the abscissa axis, where 
the main curve intersects the ordinate axis Ka = 0 is of intersect since this point is, in fact, associated 
with the most intersecting stability domain adjoining the origin of the system of coordinates in the 
Ka, Ha plane. The ordinate of point B corresponds to the value z = % 

The main D-curve in the continuous model when ~t = 0.37313, E = 10 4 and 5 = 0.9 intersects the 
abscissa axis at the point K] = 11.664 and the ordinate axis at the point/-/1 = 0.05289 (the solid curve 
in Fig. 6, the dashed curve has not been plotted). Requiring that the points of intersection of the axes 
coincide and the closest positioning of the right-hand boundary of the domain D2(0) when g = 0.37313 
in the discrete and continuous models, we obtain that, in the discrete model, it is necessary to take 
Kr = 1.187, II 1 = 0.77, II 2 = -6.5. With this choice of parameters, the parts of the D-curves of the 
continuous and discrete models, which are close to the origin of the system of coordinates form the 
right-hand boundary of the domain D2(0) in the K1, H1 plane, they pass close to one another and are 
indistinguishable in the scale of Fig. 5. At the same time, the figure as a whole, which are formed by 
the D-curves, do differ as is shown in Fig. 6 (the dotted curve corresponds to the discrete model). By 
a choice of the parameters of the discrete model, it is possible to achieve a significantly greater overall 
convergence of the two curves but, in this case, accuracy in the approximation of the boundary of the 
domain D2(0) is lost. 
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4. " S A F E "  A N D  " U N S A F E "  B O U N D A R I E S  O F  T H E  S T A B I L I T Y  
D O M A I N  

An important question, concerning the behaviour of a rotor system in the case of parameter values 
which are close to the boundary of the stability domain (BSD), is associated with the creation from a 
state of equilibrium of a type of focal point of the limit cycle (or with the contraction of a cycle to an 
equilibrium state). We shall show that, in the finite-dimensional model of a rotor being considered, the 
angular velocity of which is kept constant and which has non-linear, viscoelastic spindle mountings, 
Andronov-Hopf  bifurcation (see [4, 5, 7-10] occurs on leaving the stability domain. 

After some simple reduction of the first four equations of system (1.5), we obtain 

md~" 1 + kaZl - kr(Z z - Zl) + k~dlZll'~Zl = 

= l l r l r t (Z2  - Zl) --  i (z2 - Zl )~-~1 - 1]d'~l - rlzdl~ 1115~1 (4.1) 

m r h  + kr(Z2 - Zl) = -rldr[(£2 - zl) - i(z2 - Z l )~]  

where z l  = xl  + iyt, z2 -~ X2 + iy2. We shall seek the solution of system (4.1) in the form of a circular 
precession 

Z 1 ---- 81exp(i03t), z 2 = (81 +e2)exp( io~t )  (4.2) 

Substituting expressions (4.2) into system (4.1), we arrive at a system of non-linear equations in 81, e2 
and co which, after changing to dimensionless variables and parameters (see also (1.12)) 

tt ~ D[: l t~-  1 
E 1 E2 k2dRd q2d,~,raa 

El Rd' E2 = - -  K2a = 2' H2d - 
= Ra, m d ~  ma 

can be written in the form 

(_  ,~2 + il ia,  t + Kd)E l + ( - I  _ 1 ) ~ ( ~ ) E 2  = _ KeaIEd E  _ iH2alEd lxl .cE  
z2El + ['c 2 + ~(z)IE 2 = 0; 

Note that the condition 

where 

~(z )  = (x - 1 ) ( H  z - i1-11) - K r 
(4.3) 

II IJ ,Eu A = + iHd'C + Kd  (~t-I 1)~(I:)  , E = 

2 2 E2 - z  - 

; d e t A  = 0 

is satisfied on the BSD in the plane of the parameters of the mounting. 

AE = 0 (4.4) 
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We will denote the deviations from the dimensionless parameters of elasticity Ka and viscosity Ha of 
the mountings and the frequency of precession "c corresponding to the BSD by 8Ka, 8Hd, 8"c. In the case 
when the deviations 8Kd, 6Ha are of small magnitude, after separating the real and imaginary parts from 
system (4.3), we obtain the following equations for 8"c and [E 1 ] 

K2a[EI[ ~ dKd(*)6z = - S K  d 
dz 

H2dl,~EI] I~ dHd(Z)6, C = - 6 H  d 
dz 

(4.5) 

For the case when ~ = I], it follows from system (4.5) that 

dKd(Z) dHd(z)  IE,I 126Ka-hSna;11 : -  1 2 -  (4.6) 
llHzd[,C[~_ 12K2 d dz ' dz 

where ll and 12 are the components of the tangent vector I = (/1,/2) to BSD. The small increments 8Ka 
and 8Ha are chosen in such a way that the vector n = (SKa, 8Hd) is perpendicular to the BSD. If it is 
stipulated that the increments 8K d and 8Ha must be chosen such that the vector n is directed into the 
stability domain De(0), formula (4.6) can be rewritten in the form 

- i t  dKd ~\-l 
IEI] ~ = 12 ~K2d--~dH2dlZ[ ) I[I,n]l (4.7) 

where [ [1, nil is the modulus of the vector product. Since 12 > 0 on the BSD O2(0), the sign of the 
right-hand side of equality (4.7) is determined by the expression in parenthesis. 

If a periodic motion is produced on leaving the stability domain across any segment of its boundary, 
then such a bifurcation is called a supercritical bifurcation. The generation of self-excited oscillations 
on passing across such a segment occurs softly and such segments of the BSD have been called "safe". 
In Fig. 5, the "unsafe" segment are indicated by crosses. In the neighbourhood of "unsafe" segments, 
a periodic motion in the form of a circular precession of small radius exists in the domain of stability 
of a state of steady rotation. This means that, on approaching such a segment from the stability domain, 
the system becomes unstable to perturbations of small, but finite, magnitude. It can be seen from formula 
(4.7) that, theoretically, any segment of the BSD can be made "safe" by choosing the magnitude of Kza 
and H2~ (if, of course, materials with suitable non-linear properties can be found). For instance, when 
Kza < 0 (that is, in the case of so-called soft or regressing elastic non-linearity) and H2a = 0, the whole 
of the BSD D2(0 ) is "safe". Note that dKJdHa > 0 on the lower part of the BSD up to the furthest 
right-hand point of the graph (we denote it by C) and dKa/dH a < 0 on the part of the BSD located 
above the point C. The positive values of H~,  in the case soft elastic non-linearity, have no effect on 
the character of the lower part of the BSD (up to the point C) and the upper part can be partially or 
completely converted into "unsafe" boundary for certain values of H2d. This case is shown in Fig. 5. 
When g = 0,373, Kr = 1.204, Fla = 0.069, Yi2 = -4.2 and ~ = 1, an "unsafe" segment appears in the 
upper part of the boundary when K2~ > -18Hza. 

This research was supported financially by the Russian Foundation for Basic Research (03-01-00478, 
03-02-16924) 

R E F E R E N C E S  

1. MOISEYEV, N. N. and RUMYANTSEV, V. V., The Dynamics of a Body with Cavities Containing a Fluid. Nauka, Moscow, 
1965. 

2. DERENDYAYEV, N. Y. and SANDALOV, V. M., The stability of the steady rotation of a cylinder partially filled with a 
viscous incompressible fluid. PriM. Mat. Mekh., 1982, 46, 4, 578-586. 

3. DOSAYEV, M. Z. and SAMSONOV, V. A., The stability of the rotation of a heavy body with a viscous filler. Prikl. Mat. 
Mekh., 2002, 66, 3, 427-433. 

4. BAUTIN, N. N., The Behaviour of Dynamical Systems close to the Boundaries of a Stability Domain. Nauka, Moscow, 1984. 
5. BAUTIN, N. N. and SHIL'NIKOV, L. P., Addendum to the book by J. Marsden and M. McCracken, Bifurcation of the Birth 

of a Cycle and its Applications. Mir, Moscow, 1980, 295-316. 
6. NEIMARK, Yu. I., The Stability of Linearized Systems. LKVVIA, Leningrad, 1949. 



892 N . V .  D e r e n d y a y e v  a n d  I. N.  S o l d a t o v  

7. DERENDYAYEV, N. V., Andronov-Hopf bifurcation in the dynamics of a rotor system containing a fluid. Dokl. Akad. Nauk 
SSSR, 1988, 301, 4, 798-801. 

8. ANDRONOV, A. A. and LEONTONOVICH, Ye. A., Some cases of the dependence of limit cycles on a parameter, Uch. 
Zap. Gor'k Univ., 1939, 6, 3-24; also, see: ANDRONOV, A. A., Collected Papers'. Izd. Akad. Nauk SSSR, Moscow, 1956, 
188-216. 

9. ANDRONOV, A. A. and LYUBINA, A. G., Application of Poincard's theory on "points of bifurcation" and "change of 
stability" to the simplest self-excited systems, Zh. Eksper. Teor. Fiz., 1935, 5, 3-4, 296-309. 

10. HOPE E., Abzweigung einer periodischen L6sung von einer stationgren L6sung eines differential Systems. Bet. Math.-Phys. 
Sgichsische Akademie der Wissenschaflen Leipzig, 1942, 94, 3-22. 

Translated by E.L.S. 


